Mechanical load-dependent regulation of satellite cell and fiber size in rat soleus muscle.

نویسندگان

  • X D Wang
  • F Kawano
  • Y Matsuoka
  • K Fukunaga
  • M Terada
  • M Sudoh
  • A Ishihara
  • Y Ohira
چکیده

The effects of mechanical unloading and reloading on the properties of rat soleus muscle fibers were investigated in male Wistar Hannover rats. Satellite cells in the fibers of control rats were distributed evenly throughout the fiber length. After 16 days of hindlimb unloading, the number of satellite cells in the central, but not the proximal or distal, region of the fiber was decreased. The number of satellite cells in the central region gradually increased during the 16-day period of reloading. The mean sarcomere length in the central region of the fibers was passively shortened during unloading due to the plantarflexed position at the ankle joint: sarcomere length was maintained at <2.1 microm, which is a critical length for tension development. Myonuclear number and domain size, fiber cross-sectional area, and the total number of mitotically active and quiescent satellite cells of whole muscle fibers were lower than control fibers after 16 days of unloading. These values then returned to control values after 16 days of reloading. These results suggest that satellite cells play an important role in the regulation of muscle fiber properties. The data also indicate that the satellite cell-related regulation of muscle fiber properties is dependent on the level of mechanical loading, which, in turn, is influenced by the mean sarcomere length. However, it is still unclear why the region-specific responses, which were obvious in satellite cells, were not induced in myonuclear number and fiber cross-sectional area.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat

Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...

متن کامل

Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy.

Resident muscle stem cells, known as satellite cells, are thought to be the main mediators of skeletal muscle plasticity. Satellite cells are activated, replicate, and fuse into existing muscle fibers in response to both muscle injury and mechanical load. It is generally well-accepted that satellite cells participate in postnatal growth, hypertrophy, and muscle regeneration following injury; ho...

متن کامل

Increased hypertrophic response with increased mechanical load in skeletal muscles receiving identical activity patterns.

It is often assumed that mechanical factors are important for effects of exercise on muscle, but during voluntary training and most experimental conditions the effects could solely be attributed to differences in electrical activity, and direct evidence for a mechanosensory pathway has been scarce. We here show that, in rat muscles stimulated in vivo under deep anesthesia with identical electri...

متن کامل

Role(s) of nucleoli and phosphorylation of ribosomal protein S6 and/or HSP27 in the regulation of muscle mass.

Effects of 14 days of hindlimb unloading or synergist ablation-related overloading with or without deafferentation on the fiber cross-sectional area, myonuclear number, size, and domain, the number of nucleoli in a single myonucleus, and the levels in the phosphorylation of the ribosomal protein S6 (S6) and 27-kDa heat shock protein (HSP27) were studied in rat soleus. Hypertrophy of fibers (+24...

متن کامل

Mechanisms leading to restoration of muscle size with exercise and transplantation after spinal cord injury.

We have shown that cycling exercise combined with fetal spinal cord transplantation restored muscle mass reduced as a result of complete transection of the spinal cord. In this study, mechanisms whereby this combined intervention increased the size of atrophied soleus and plantaris muscles were investigated. Rats were divided into five groups (n = 4, per group): control, nontransected; spinal c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 290 4  شماره 

صفحات  -

تاریخ انتشار 2006